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We study a Maxwell-Proca action in an asymptotically AdS black hole background. When moving the
temperature of the black hole, we find rich phase diagrams that depend strongly on the dimension of
the operator dual to the Proca field. We present different solutions in the bulk that correspond to the
holographic dual for s-, p-, or sþ p-wave superfluids. In the last case we observe the onset of a
spontaneously induced current.
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I. INTRODUCTION

The gauge/gravity correspondence [1–3] provides a
useful tool to study quantum field theories in the strongly
coupled regime. In particular, it has been used to study
condensed matter systems, where a broad variety of
systems are believed to be strongly coupled [4–6].
Among condensed matter systems, of particular interest

are the high critical temperature superconductors, which
have a rich phase diagram. A first attempt to approach these
interesting systems through holography was done in [7],
where the first holographic superfluid was introduced. The
model consists of a gauged complex scalar field on
the background of an AdS-Schwarzschild black hole.
The leading behavior of the temporal component of the
gauge field close to the boundary can be associated to the
chemical potential of the dual field theory. A large enough
chemical potential triggers an instability for the scalar
field, leading to nontrivial regular solutions. On the dual
theory, this corresponds to a scalar operator acquiring a
vacuum expectation value, which corresponds to an s-wave
order parameter associated to the broken Uð1Þ global
symmetry.
A first model for a holographic p-wave superfluid was

introduced in [8], where the condensation of a vector field
was modeled with an asymptotically AdS black hole
having a SUð2Þ gauge field living on it. Stringy versions
for this model were studied in [9–11].
An alternative model for the holographic dual to a p-

wave superfluid was also introduced in [12] where, instead
of a SUð2Þ gauge field, the matter content is a complex
Proca gauge field charged under Uð1Þ. Again, as the
temperature is lowered the normal phase becomes unstable,
leading to the spontaneous symmetry breaking of the Uð1Þ
gauge symmetry. Since the operator that acquires a non-
trivial expectation value is a vector, the SOð2Þ rotational
symmetry is also broken.
In this paper we are going to study the alternative model

for p-wave superfluidity introduced in [12], but consider-
ing a more general ansatz for the background fields that will
allow a timelike vector condensate in the dual field theory.

Since such a condensate will not break the rotational
symmetry, we shall call these solutions s-wave superfluids.
In order to find such solutions, we will follow an ansatz
used in the context of Proca balls [13] and Proca stars [14].
These are spherically symmetric macroscopic condensates
of a complex Proca field. We will extend the results of
[13–15] to gauged fields in AdS.
We will find that we can have an s-wave condensate, a

p-wave condensate, or both at the same time, leading to an
sþ p-wave phase. The competition and coexistence of
different order parameters is believed to play a central role
in the description of the high Tc superconductors [16] as
well as other condensed matter systems [17] and has been
broadly studied in different holographic models [18–28].
This model has a new feature though: whenever two

condensates coexist, a spontaneously induced current
appears in the direction of the vector condensate. The
appearance of spontaneous currents has been reported
experimentally in high Tc superconductors [29]. In this
paper we will show how these spontaneous currents appear
in a simple holographic model and its relation to the
spontaneous breaking of symmetry.
In a different context, spontaneous currents can be

found in theoretical models of quark matter. Within the
mean field approximation for the high density effective
theory of the kaon-condensed, color-flavor-locked
(CFLK) phase of quark matter, the Nambu-Goldstone
bosons coming from the spontaneous breaking of global
symmetries are the relevant degrees of freedom of the
theory below the chemical potential scale. This CFLK
phase of quark matter has been shown to develop a
spontaneous current of Nambu-Goldstone bosons due to
spontaneous breaking of baryon number symmetry and
hypercharge symmetry in some range of parameters [30].
Similar instabilities towards phases with spontaneous
currents were found in models for the gluon and
Larkin–Ovchinnikov-Fulde–Ferrell (LOFF) phases [31].
Even though we work with a different symmetry breaking
pattern, we show that spontaneous currents may occur as
well in a strongly coupled regime and beyond mean field
theory.
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II. THE MODEL

In this section we are going to set the geometric back-
ground and the matter content of our model. As was
explained in the Introduction, we have a massive complex
vector field Bμ, charged under a Uð1Þ gauge symmetry
whose gauge field is denoted by Aμ. The matter action reads

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

1

2
B†
μνBμν −m2B†

μBμ

�
;

ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ and Bμν ¼ DμBν −DνBμ is the
field strength for the vectorial field. The covariant deriva-
tive is expressed as Dμ ¼ ∂μ − igAμ, with g the coupling
between the gauge and Proca field.
We are not going to take into account the backreaction of

the fields on the geometry and our choice for the metric is
an AdS-Schwarzschild black hole,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ; ð2Þ

with fðrÞ ¼ r2ð1 − r3h
r3Þ, using rh to denote the position of

the horizon. On the other hand, the ansatz for the matter
fields reads

A ¼ ϕðrÞdtþ AxðrÞdx;
B ¼ BtðrÞdtþ iBrðrÞdrþ BxðrÞdx; ð3Þ

for the gauge and the massive vector, respectively. We will
consider all fields to be real. This model was already
studied in the context of holographic superfluids in [12,32]
with BtðrÞ ¼ BrðrÞ ¼ 0. We will show that with our more
general ansatz new features appear. The equations of
motion read
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and they have the following scaling symmetry,

r → λr; ðBt; Bx;ϕÞ → λðBt; Bx;ϕÞ; Br → λ−1Br; ð5Þ
which allows us to set rh ¼ 1. We will use g ¼ 1 without loss of generality.
We will solve the equations of motion by shooting from the horizon out to the boundary. The gauge field and the vector

must be regular at the IR. This implies the following asymptotic expansion at the horizon:

ϕðrÞ ≈ ϕhðr − 1Þ þ 1
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We will use the undetermined horizon values ϕh, Ah, Bth,
and Bxh as shooting parameters to integrate our equations
of motion into the desired near-boundary behaviors.
The UV expansion for the matter fields reads

ϕðrÞ ≈ μ −
ρ

r
; AxðrÞ ≈ vx −

hJxi
r

BtðrÞ ≈
St
rΔ−

þ hOsi
rΔþ

; BxðrÞ ≈
Sx
rΔ−

þ hOpi
rΔþ

; ð7Þ

with Δ� ¼ 1�
ffiffiffiffiffiffiffiffiffiffi
1þ4m2

p
2

. For a vector field the BF bound
establishes that m2 > − 1

4
[5]. According to the holographic

dictionary, μ and ρwill be the boundary chemical potentials
and charge density and we will work at fixed chemical
potential μ, i.e., in the grand canonical ensemble. hOsi and
hOpi correspond to the s and p order parameters. Since we
want the Uð1Þ symmetry to be spontaneously broken, we
will look for solutions with St ¼ Sx ¼ 0. For these boun-
dary conditions, the profile for Br will be automatically
regular. Jx will be a spontaneously induced current that will
appear for certain solutions. We will always look for
solutions with vx ¼ 0. Turning on a nontrivial source for
Jx might be interesting and might lead into a generalization
of our solutions with a possibly richer phase diagram
[33–39]. The scaling symmetry (5) implies that the relevant
physical quantities change as

T → λT; μ → λμ; ðρ; hJxiÞ → λ2ðρ; hJxiÞ;
ðhOsi; hOpiÞ → λΔþþ1ðhOsi; hOpiÞ; ð8Þ

with T ¼ 3rh
4π the Gibbons-Hawking temperature of the

black hole.
The free energy Ω is identified in the AdS/CFT corre-

spondence with the on-shell action. For our ansatz it is

Ω ¼ 1

2
μρþ

Z
dr
fðrÞ ðBxðrÞðfðrÞ2BrðrÞA0

xðrÞ

þ AxðrÞðfðrÞðBrðrÞfðrÞÞ0 þ 2BtðrÞϕÞÞ
þ AxðrÞ2ðfðrÞ2BrðrÞ2 − BtðrÞ2Þ
− rfðrÞðϕðrÞðrBtðrÞB0

rðrÞ þ 2BrðrÞBtðrÞ
þ rBrðrÞ2ϕðrÞÞ þ rBrðrÞBtðrÞϕ0ðrÞÞ
− BxðrÞ2ϕðrÞ2Þ: ð9Þ

III. SOLUTIONS

In this section we present our results coming from the
numerical integration of the equations of motion. We have
four kinds of solutions depending on which symmetries we
want to break, which will lead into four possible phases for
the system.

(i) Normal phase: Here we have BνðrÞ ¼ 0, AxðrÞ ¼ 0,
and the solution is the typical AdS-RN black hole
with ϕðrÞ ¼ μð1 − rh

r Þ.
(ii) s-wave: To obtain these solutions we take non-

vanishing values for the fields ϕðrÞ, BtðrÞ, and
BrðrÞ, while BxðrÞ ¼ 0. The expectation value of a
timelike operator breaks the Uð1Þ symmetry sponta-
neously. Since these components remain invariant
under spatial rotations in the boundary we say these
gravity solutions are dual to an s-wave superfluid.

(iii) p-wave: The only nontrivial components of the
vectors involved in this solution are ϕðrÞ and
BxðrÞ. These solutions are dual to a p-wave super-
fluid since the order parameter is a vector that not
only breaks the internal Uð1Þ symmetry but also
spatial rotations.

(iv) sþ p-wave: These solutions will have a nontrivial
profile for all the fields written in (3).

Following [32] we will focus on two particular values for
the mass: m2 ¼ 3=4, −3=16. These values for the mass
allow us to compare our results with the existing literature.
We also checked that a qualitatively similar behavior is
obtained for m2 ¼ 2, 5=16, −7=64.
Typical profiles of the bulk fields for the sþ p solution

are shown in Fig. 1. Notice that BtðrÞ has a node in the bulk
(we also find solutions with more nodes, but these are all
unstable). Usually one may expect that the stable solution
does not have any nodes, but this is not the case for our
model. This fact might be counterintuitive but it was
rigourously proved for simpler configurations in [13]. So
far we only have numerical evidence that these solutions
are indeed stable and a global minimum of the free energy.
In order to analyze the stability of the different solutions

listed above we study the free energy (9) as a function of the
chemical potential. Figure 2 shows the cases for m2 ¼
−3=16 andm2 ¼ 3=4 but similar results can be obtained for
other masses, finding important qualitative differences only
when changing the sign of the squared mass.
For negative masses we find that the superconducting

instability occurs first in the p-channel, when coming from
the high 1=μ regime. Lowering 1=μwe find s-wave solutions
but these are never energetically favored. Then the phase
diagram for this range of masses remains unchanged with
respect to that presented in [32]. In particular, for m2 ¼
−3=16 we found the critical chemical potential μp ≈ 2.78.
This is not the case for m2 > 0. When lowering 1=μ we

find that the s-wave phase appears first and its energy is
always lower than the p-wave phase. For an even lower 1=μ
a solution with both s and p order parameters appears. This
solution emerges continually from the s-wave solutions
giving a second order phase transition. In particular, for
m2 ¼ 3=4 we found the critical chemical potentials μs ≈
3.96 and μsþp ≈ 11.44.
Finally, in Fig. 3 we show some of the relevant quantities

for the dual field theory in the sþ p-wave phase, such as
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FIG. 2. Free energy as a function of the inverse chemical potential for m2 ¼ −3=16 (left) and m2 ¼ 3=4 (right). The different curves
correspond to the normal phase (blue), p-wave (yellow), s-wave (purple), and sþ p-wave (green).
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FIG. 3. Condensates (left) and spontaneously induced current (right) as a function of the inverse chemical potential for m2 ¼ 3
4
. The
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FIG. 1. Typical profile for the bulk fields in a sþ p superfluid solution. Left: ϕðrÞ (blue) and AxðrÞ (purple). Right: BtðrÞ (blue), BrðrÞ
(yellow), and BxðrÞ (purple). The profiles correspond to a regular solution for m2 ¼ 3=4 and μ ¼ 15.36.
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the condensate and the onset of a spontaneous current. Note
that the spontaneous current hJxi appears at the critical
temperature where the transition from the s-phase to the
sþ p-phase occurs. The origin of this current can be
understood in terms of the bulk equations of motion (4),
since the equation of motion for the Ax couples to those for
the Bx;t fields.

IV. CONCLUSIONS

In summary, we compute the thermodynamical proper-
ties associated to a Maxwell-Proca model in an asymp-
totically AdS black hole. We observe a rich structure of
phase transitions among s-, p-, and sþ p-wave super-
fluids. Moreover, the appearance of a spontaneously
generated current brings a novel interest in these kinds
of holographic models.
Both the appearance of spontaneous currents and the

coexistence and competition of different order parameters
are features of strongly correlated systems. Field theoretical
studies rely on mean field approximation or perturbative
methods. Here we propose an alternative approach to these
new properties in the context of the AdS/CFT duality using

remarkably simple matter content. In our model, the order
parameters and spontaneous currents correspond to
classical fields in the bulk and the couplings between them
give rise to the different phases in a natural way.
As a future direction it would be interesting to realize a

quasinormal-modes analysis of the system. This will show
the stability of our solutions and may give useful insight
into the excitations of the dual theory. In particular, an
analysis of perturbations at finite momentum will enlighten
us about the existence of striped phases, for which a full
nonlinear analysis might be numerically more involved.
The existence of striped instabilities in systems with
superflows has been modeled both holographically [38]
and field theoretically [40–43], even for spontaneous
currents [31].
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